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Conceptual Advanced Fast Reactor Site Plan 
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 Close-coupling of reactor and fuel recycle facility at the reactor park allows for efficient fuel 
multi-recycle 

– Results in off-site transport of engineered waste forms not used fuel 



Advanced Fast Reactor Systems 
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 Advanced fast reactor systems have 
unique features that impact choice of 
reprocessing technology 

– Metal fuel 
– High concentration of transuranic 

elements in fuel (e.g., 20 wt%) 
– Short cooling time to allow for in-vessel 

storage of used fuel prior to reprocessing  
• No extensive out-of-reactor used fuel 

storage system required 
• Eliminates large out-of-reactor 

inventory of transuranic elements 
– Sodium used for bonding metal fuel meat 

with cladding material for improved heat 
transfer 

• Reacts to form sodium chloride that 
is soluble in molten salt 

  

 



Technology Development Objectives 
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Develop next-generation fuel cycle and waste management technologies that enable a 
sustainable fuel cycle 

 

 Industrially practicable and economical 

– High capacity factor, remote operation requiring limited intervention, modular systems to facilitate 
repair, low maintenance 

– Minimal impact on overall cost of electricity 

 

 Safeguardable system that meets U.S. non-proliferation objectives 

– Move away from using terminology proliferation-resistant 

– Focus on quantifiable rather than qualitative characteristics of the system 

 

 Maximize actinide recovery to maximize resource utilization and provide potential 
enhancements to future high-level waste repository 

 

 Encapsulate fission products in engineered waste forms that can be disposed in an 
environmentally responsible manner 



Conceptual Flowsheet for Treating Used Metallic Fuel 
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Electrorefining Technology 

 Electrorefining is primary unit operation in 
used fuel treatment process 

– Anodic dissolution of used fuel 

– Cathodic deposition of actinides for recycle 

 

 Uranium electrorefining is most mature of all 
pyrochemical technologies 

– Process viability demonstrated through 
laboratory- and engineering-scale testing with 
simulated and irradiated fuel 

– Sustained treatment of irradiated fuel in a 
remote environment demonstrated during 
treatment of fuel from Experimental Breeder 
Reactor II (Mk IV and V electrorefiners) 

 

 Advanced design developed to eliminate 
process inefficiencies identified during EBR II 
fuel treatment (Mk IV and V refiners) 

– Scalability 

– Product Recovery  

– Process efficiency 

 

Planar 
electrorefiner 
prototype 
module 
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Dendritic U product 



Next-Generation Electrorefiner 
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General Electric - Hitachi Nuclear 
Patent Application: US20130161186  

 Industrialization of technology addressed 
through process efficiency and scalability 
improvements 

– Modular approach improves scalability 
and throughput 

– Intermittent product removal from 
cathodes  enhances process efficiency 

– Automated product recovery enhances 
throughput 

– Design allows simultaneous recovery of U 
and co-deposited U/TRU products 



Approaches to U/TRU Recovery 

 Alloy-forming liquid metal cathode (e.g., cadmium) 

– Deposition potential for TRU (and lanthanides) is shifted to less cathodic values 

• Decreases separation between TRU and lanthanide metals 

– Requires subsequent TRU separation from alloy and residual salt 

– Process demonstrated at kilogram-scale with irradiated materials 

• Issues with control of dendrite formation on surface of recovery crucible 

• Materials compatibility issues 

 

 Non-alloying solid metal cathode 

– High current density at cathode shifts cathode potential to more cathodic values as 
cathode current density exceeds U3+ mass transfer limiting current 

– Maximum separation between TRUs and lanthanides, limits lanthanide 
contamination of product and mitigates fuel clad chemical interactions 

– No alloy forms with the cathode material 

– Low melting U-TRU alloy makes metal - residual salt separation via bottom-pour 
feasible 

 

 R&D efforts focused on developing solid cathode technology for U/TRU 
recovery 
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U/TRU Co-deposition Studies 
 U/TRU co-deposition studies focused on evaluation 

of process at the kilogram scale using uranium and 
TRU surrogates (lanthanides) 

– Laboratory –scale tests revealed 

• Clear plateaus at potentials consistent with 
thermodynamic predictions  

• Current levels proportional to relative 
concentrations of U, Np, and Gd 

– Understand boundary conditions for U/TRU recovery 
from laboratory-scale tests 

 

 Test apparatus being used to evaluate simultaneous 
U deposition and U/TRU co-deposition and co-
deposition system performance 

Sketch of co-deposition test system 
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Conceptual Flowsheet for Treating Used Oxide Fuel 
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Electroreduction Technology 

 Electroreduction converts used fuel oxides to 
base metals for treatment in electrorefiner 

– Anode process produces oxygen gas that is swept 
from cell  

– Cathode process yields metallic product suitable 
for electrorefining 

– LiCl - Li2O solvent @650°C 
 

 Process chemistry demonstrated through tests 
with simulated (ANL) and irradiated LWR and 
fast reactor MOX fuel (INL) 

 

 High-capacity cell studies 

– Kilogram-scale demonstrations of process yielded 
high current efficiency and efficient oxygen gas 
removal from cell 

– Reduction rates are very good; cells designed to 
collect fundamental data 

– Fission products have no effect on conversion 
process 

 

 Process development activities now focused on 
anode materials testing and process monitoring  

 Kg-scale anode test rig  



Next-Generation Electroreducer 
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General Electric - Hitachi Nuclear 
Patent Application: US20120160666  

 Design developed based on Pt-
anode technology but design 
flexibility allows incorporation of 
alternative anode materials 



Process Development Challenges and Opportunities 

 Significant effort focused on back-end of flowsheet 

– Maximize actinide recovery 

• Crucial to reducing long-term radiotoxicity and heat load of high-level waste going to a 
geologic repository 

• Recovered actinides recycled to the treatment system 

– Recover right amount of fission products from process salt to achieve actinide product 
quality and minimize waste destined for repository 

• No need to produce high purity salt for recycle 

• Constitution of recovered fission products enables encapsulation in durable waste forms 

– Salt treatment processes should not add complexity or significant cost to the fuel 
treatment facility 

 

 Process options identified, reviewed, and preferred options down-selected for development 

– Electrolysis 

• Actinide drawdown 

• Lanthanide drawdown 

– Two options being explored for alkali and alkaline earth elements 

• Fractional crystallization with LiCl-based salt system 

• Electrochemical ion-selective membrane with eutectic salt system (Sandia National 
Laboratory) 
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Actinide and Lanthanide Drawdown via Electrolysis 

 Electrolysis can be used for recovery of 
actinide metals from molten salt solutions 

– Routinely used in industrial-scale production of 
specialty metals 

– High degree of separation of actinides from the 
salt  

– Recovered actinides recycled to the treatment 
system 

– Recovered lanthanides incorporated into a 
durable waste form 

– Actinide and lanthanide drawdown can be 
performed sequentially in the same process 
equipment 

– Significantly decreases the amount of the high-
level waste generated in the electrochemical 
treatment process without adding additional 
complexity 

 

 Actinide recovery (e.g., U, Pu) demonstrated 
during initial feasibility experiments with 
earlier system 
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Electrolysis demonstration system 



Operation Modeling of Drawdown Process 

 In electrolysis, there is a continuous change in the composition of the salt 

– Actinide deposition potential becomes more negative as their concentration in salt decreases 

– Operating potential has to be adjusted to more negative values as process proceeds 

– Depending on the extent of separation, the values can be negative enough to deposit lanthanides 
along with the actinides 

 

 Theoretical treatment of electrolysis process revealed the better the recovery of actinides, 
the poorer the separation between actinides and lanthanides 

– For 99.9% Am recovery, majority of lanthanides will co-deposit 

– For 65% Am recovery, almost complete separation can be achieved 

– All calculations are based on assumption of Am2+ in salt phase 

 

 Better understanding of Am chemistry (Am2+/Am3+) required under process relevant 
conditions 

 

 Currently determining formal electrochemical potentials for U, Np, Pu and Am under a 
consistent set of concentration and salt conditions 

– Results will guide selection of operating conditions for electrolysis system 
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Summary 

Electrochemical process development is moving us towards a sustainable nuclear energy 
system 

 

 Next-generation refining and reduction systems ready for evaluation 
 Electroreduction provides bridge between light water reactors and fast reactors for fuel cycle closure 

 U/TRU co-deposition system can be incorporated into electrorefiner as it becomes available 

 

 Development and testing of salt treatment systems is occurring at laboratory- and/or  
engineering-scale 

– No showstoppers identified; scale-up and throughput requirements can be met for multiple fuel 
treatment scenarios 

– Additional thermodynamic data needed for minor actinides under process relevant conditions is being 
collected and will guide engineering-scale system development 

– Experimental work augmented by focused modeling activities 

 

 Process monitoring and control technologies are integral to electrochemical process 
development 

– May be useful indicators for material diversion and material control and accountancy measurements 
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